图形神经网络(GNN)已被证明是分析非欧国人图数据的强大工具。但是,缺乏有效的分布图学习(GL)系统极大地阻碍了GNN的应用,尤其是当图形大且GNN相对深时。本文中,我们提出了GraphTheta,这是一种以顶点为中心的图形编程模型实现的新颖分布式和可扩展的GL系统。 GraphTheta是第一个基于分布式图处理的GL系统,其神经网络运算符以用户定义的功能实现。该系统支持多种培训策略,并在分布式(虚拟)机器上启用高度可扩展的大图学习。为了促进图形卷积实现,GraphTheta提出了一个名为NN-Tgar的新的GL抽象,以弥合图形处理和图形深度学习之间的差距。提出了分布式图引擎,以通过混合平行执行进行随机梯度下降优化。此外,除了全球批次和迷你批次外,我们还为新的集群批次培训策略提供了支持。我们使用许多网络大小的数据集评估GraphTheta,范围从小,适度到大规模。实验结果表明,GraphTheta可以很好地扩展到1,024名工人,用于培训内部开发的GNN,该工业尺度的Aripay数据集为14亿个节点和41亿个属性边缘,并带有CPU虚拟机(Dockers)群的小群。 (5 $ \ sim $ 12GB)。此外,GraphTheta比最先进的GNN实现获得了可比或更好的预测结果,证明其学习GNN和现有框架的能力,并且可以超过多达$ 2.02 \ tims $ $ 2.02 \ times $,具有更好的可扩展性。据我们所知,这项工作介绍了文献中最大的边缘属性GNN学习任务。
translated by 谷歌翻译
基于视频的人重新识别(REID)旨在识别多个非重叠摄像机的给定的行人视频序列。为了汇总视频样本的时间和空间特征,引入了图神经网络(GNN)。但是,现有的基于图的模型(例如STGCN)在节点功能上执行\ textIt {mean}/\ textit {max boming}以获取图表表示,该图表忽略了图形拓扑和节点的重要性。在本文中,我们建议图形池网络(GPNET)学习视频检索的多粒度图表示,其中实现了\ textit {Graph boming layer},以简化图形。我们首先构建了一个多粒图,其节点特征表示由骨架学到的图像嵌入,并且在颞和欧几里得邻域节点之间建立了边缘。然后,我们实现多个图形卷积层以在图上执行邻域聚集。为了下图,我们提出了一个多头全注意图池(MHFAPOOL)层,该图集合了现有节点群集和节点选择池的优势。具体而言,MHFAPOOL将全部注意矩阵的主要特征向量作为聚合系数涉及每个汇总节点中的全局图信息。广泛的实验表明,我们的GPNET在四个广泛使用的数据集(即火星,dukemtmc-veneoreid,ilids-vid and Prid-2011)上实现了竞争结果。
translated by 谷歌翻译
现有的基于视频的人重新识别(REID)的方法主要通过功能提取器和功能聚合器来了解给定行人的外观特征。但是,当不同的行人外观相似时,外观模型将失败。考虑到不同的行人具有不同的步行姿势和身体比例,我们建议学习视频检索的外观功能之外的歧视性姿势功能。具体而言,我们实现了一个两分支的体系结构,以单独学习外观功能和姿势功能,然后将它们串联在一起进行推理。为了学习姿势特征,我们首先通过现成的姿势检测器检测到每个框架中的行人姿势,并使用姿势序列构建时间图。然后,我们利用复发图卷积网络(RGCN)来学习时间姿势图的节点嵌入,该姿势图设计了一种全局信息传播机制,以同时实现框内节点的邻域聚集,并在框架间图之间传递消息。最后,我们提出了一种由节点注意和时间注意的双重意见方法,以从节点嵌入中获得时间图表示,其中采用自我注意机制来了解每个节点和每个帧的重要性。我们在三个基于视频的REID数据集(即火星,Dukemtmc和Ilids-Vid)上验证了所提出的方法,其实验结果表明,学习的姿势功能可以有效地改善现有外观模型的性能。
translated by 谷歌翻译
基于模型的步态识别方法通常采用行人步行姿势来识别人类。但是,由于摄像头视图的改变,现有方法并未明确解决人类姿势的较大阶层差异。在本文中,我们建议通过通过低UPPER生成的对抗网络(Lugan)学习全级转换矩阵来为每个单视姿势样本生成多视图姿势序列。通过摄像机成像的先验,我们得出的是,跨视图之间的空间坐标满足了全级矩阵的线性转换,因此,本文采用了对抗性训练来从源姿势学习转换矩阵,并获得目标视图以获得目标。目标姿势序列。为此,我们实现了由图形卷积(GCN)层组成的发电机,完全连接(FC)层和两支分支卷积(CNN)层:GCN层和FC层编码源姿势序列和目标视图,然后是CNN分支最后,分别学习一个三角形基质和上三角基质,最后它们被乘以制定全级转换矩阵。出于对抗训练的目的,我们进一步设计了一个条件鉴别因子,该条件区分姿势序列是真实的还是产生的。为了启用高级相关性学习,我们提出了一个名为Multi尺度超图卷积(HGC)的插件播放模块,以替换基线中的空间图卷积层,该层可以同时模拟联合级别的部分,部分部分 - 水平和身体水平的相关性。在两个大型步态识别数据集(即CASIA-B和OUMVLP置位)上进行的广泛实验表明,我们的方法的表现优于基线模型,并以一个较大的边距基于基于姿势的方法。
translated by 谷歌翻译
在本文中,我们提出了一种用于HSI去噪的强大主成分分析的新型非耦合方法,其侧重于分别同时为低级和稀疏组分的等级和列方向稀疏性产生更准确的近似。特别是,新方法采用日志确定级别近似和新颖的$ \ ell_ {2,\ log} $常规,以便分别限制组件矩阵的本地低级或列明智地稀疏属性。对于$ \ ell_ {2,\ log} $ - 正常化的收缩问题,我们开发了一个高效的封闭式解决方案,该解决方案名为$ \ ell_ {2,\ log} $ - 收缩运算符。新的正则化和相应的操作员通常可以用于需要列明显稀疏性的其他问题。此外,我们在基于日志的非凸rpca模型中强加了空间光谱总变化正则化,这增强了从恢复的HSI中的空间和光谱视图中的全局转换平滑度和光谱一致性。关于模拟和实际HSIS的广泛实验证明了所提出的方法在去噪HSIS中的有效性。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译